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Abstract

A finite element method (FEM), the waveguide-FEM, is used to calculate wave propagation
characteristics for built-up thin-walled structures. Such characteristics are determined from a dispersion
relation in the form of an eigenvalue problem established from the FE formulation. In particular, vital
characteristics such as the modal density, the group velocity and the waveform are evaluated. A description
of the evaluation of a dispersion relation for a channel beam, from data given by the FE formulation, is
presented. Subsequently, the method for determining the modal density and group velocity from FE input
data is shown in detail for the beam structure. To show the versatility of the method a second example
considers a statistical energy analysis (SEA), made to establish the degree to which vibrations in a wind
tunnel are transmitted to a thin-walled plate mounted into its wall. The critical input datum to the SEA
model is the wind tunnel’s modal density, which is calculated by the method presented.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

High-frequency vibration analysis benefits from an understanding of the vibrational waves
propagating in the structure of interest. Important characteristics of these waves are the
wavenumbers, the group velocity and the waveform. Vital characteristics for a statistical energy
analysis (SEA) are the modal density and the relation between modal energy and vibration
velocity, which depends on the mass distribution and the waveform. For common structural
components, such as beams, plates and cylinders, all of these characteristics have been established
[1–5]. However, analysis of general structures is often difficult.
The purpose of this paper is to demonstrate how such an analysis may be performed using a

computational technique. This technique applies for structures that have arbitrary cross-sectional
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properties that are uniform along one direction. For this broad class of structures, it is both
adaptable and efficient.
The waveguide finite element method (FEM) uses one- or two-dimensional FE shape functions

to describe the motion’s x- and y-dependencies, where, without loss of generality it is assumed that
the structure is aligned with the z-axis. It follows that the ‘nodal’ motions are functions of the z-
variable. Applying standard FE procedures, a set of coupled wave equations is formulated. For
harmonic vibration, the solutions to these wave equations are given by a linear eigenvalue
problem, for which efficient numerical algorithms are available.
Possibly, the first application of the waveguide-FE technique was made by Aalami who studied

wave propagation in rods with arbitrary cross-section [6]. Studies that are more recent describe
wave propagation in laminated composite plates [7], thin-walled beams [8], railway track [9,10],
rib-stiffened panels [11], twisted beams [12] anisotropic shells and beams [13,14], fluid-filled pipes
[15], a railway car structure [16] and pre-stressed and curved shells [17]. Structures with constant
curvature along the waveguide can also be handled [12,17]. The proven versatility of the FEM
suggests that the method may apply for any conceivable structure with arbitrary cross-sectional
properties that are uniform along one direction.
The following presents, for the first time, methodology for post-processing of waveguide-FE

models, useful for vibration analysis and in particular SEA. The presentation is made via two
examples.
The first example, in Section 2, considers a U-shaped channel beam with dimensions such that

beam theories can apply only in a lower-frequency regime. For this structure, the dispersion
relations are solved and the results are compared with those resulting from the Euler and Vlasov
beam theories. Upon this basis, the modal density and group velocity for the various wave
components are calculated.
The second example, in Section 3, considers a wind tunnel. A major concern for some at the

MWL has been to establish the degree to which vibrations in the tunnel are transmitted to a thin-
walled plate mounted into its wall. One of the methods for assessing this is based on a simple SEA
model in which the critical input datum is the modal density of the wind tunnel. Section 3 presents
the waveguide-FE model of the tunnel and the SEA model for estimating the vibration
transmission to the plate. A comparison with experimental results is made and discussed.

2. Analysis of vibrational waves in a channel beam

Consider the beam structure shown in Fig. 1. The cross-section element clearly demonstrates
the channel beams construction consisting of three plate strips. The principal dimensions are:
height, h ¼ 155 mm; width, b ¼ 60 mm and wall thickness, t ¼ 4:5 mm: This steel beam structure
was an integral part of a Swedish railway car base frame. Approximate analytical techniques, that
are commonly used for such structures, using Euler beam theory or Vlasov beam theory are only
accurate in a lower frequency regime.
Adopting a numerical method for the analysis of vibration the geometry or mesh used in the

waveguide-FEM is depicted in Fig. 2. Note that only the cross-section requires a FE mesh. Indeed,
the waveguide-FE formulation assumes a polynomial description of the displacements’
dependence on the cross-sectional co-ordinates. A linear variation of the in-plane displacements
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and a cubic variation of the out-of-plane displacement between the nodes was assumed. A concise
description of the waveguide-FEM formulation is detailed in the Appendix.
Application of the waveguide-FEM yields the following homogeneous wave equation for the

channel beam

X4
n¼0

Kn
dnu

dzn
� o2Mu ¼ 0; ð1Þ

where o is the angular frequency, a harmonic time dependence of the form e�iot is assumed and
suppressed throughout. Kn; n ¼ 0;y; 4; are ‘stiffness’ matrices, M is the mass matrix and the
vector u contains the ‘nodal’ displacements as functions of z: Using the element described in the
Appendix, these are, for each node, the three displacement components and the rotation about the
z-axis. The equations (1) form a set of coupled ordinary differential equations with constant
coefficients. The solutions are in the form of exponential functions. Specifically, for a propagating
wave, the nodal displacements take the form

uðzÞ ¼ Ueikz; ð2Þ
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Fig. 1. Sketch of channel beam. The stars indicate the locations of the mass and shear centres.
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where the vector U defines the waveform and k is the wavenumber. Now, Eq. (2) is inserted into
Eq. (1), upon which a two-parameter ðk;oÞ eigenvalue problem follows

½KðkÞ � o2M�U ¼ 0; ð3Þ
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Fig. 2. (a) Simple waveguide-FE model of channel beam. Circles indicate node positions. (b) As (a) but detailed

waveguide-FE model.
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where

KðkÞ ¼
X4
n¼0

ðikÞnKn: ð4Þ

Eq. (3) can either, for a given frequency, o; be solved as a polynomial eigenvalue problem in k or,
for a given wavenumber, k; as a linear generalised eigenvalue problem in o: Section 2.2 presents
the wave solutions resulting from these procedures and from the applications of beam theories.
First, some important properties of the matrices in Eq. (3) and the procedures used to solve the
eigenvalue problems are discussed.

2.1. Properties of the matrices and solution procedure

The matrices defined above have some properties that will be stated in the following.
These properties apply for structures built up by the waveguide-FE detailed in the Appendix. It

is important to note that only conservative motion is considered, unless explicitly stated
otherwise, and therefore all the matrices Kn; n ¼ 0;y; 4; and M are real. Also, the mass matrix M

is symmetric and positive definite. For the thin-walled element used, the matrix K3 is zero. The
matrices K4; K2 and K0 are symmetric and K1 is anti-symmetric. It follows that K; defined by
Eq. (4), is Hermitian for real-valued k: Consequently, the eigenfrequencies are real valued for
propagating undamped waves (real k).
The left eigenvector UðLÞ is defined by

UðLÞT½KðkÞ � o2M� ¼ 0: ð5Þ

The left eigenvector equals the complex conjugate of the right eigenvector, given by Eq. (3),

UðLÞ ¼ U�; ð6Þ

since K is Hermitian and M is real and symmetric.
For an eigenvalue analysis the mass matrix M is Cholesky factorised so that M ¼ mTm; where

mT denotes transpose of a Cholesky matrix. Eq. (3) is transformed into a standard linear
eigenvalue problem [18, p. 442]

½A � o2I�x ¼ 0; ð7Þ

where

AðkÞ ¼ ðmTÞ�1KðkÞm�1; mTm ¼ M;U ¼ m�1x: ð8Þ

This standard procedure increases numerical efficiency and stability. It is applied in the following
but is not discussed further.
As stated earlier, the eigenvalue problem (3) is solved for a given wavenumber k in form (7), but

if instead, Eq. (3) is considered for a given frequency, o; it defines a polynomial eigenvalue
problem for the wavenumbers. This polynomial eigenvalue problem is as in Ref. [11, Appendix A]
transformed to a generalised linear eigenvalue problem, which can be solved by standard
methods.
Tisseur and Meerbergen report that polynomial eigenvalue problems, which are linearised, can

be numerically ill-conditioned [19]. Such problems might be an issue for the waveguide-FEM but
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have not yet been encountered. Possibly, the linearisation procedure proposed in Ref. [11] has a
stabilising effect, since it eliminates redundant variables. Nevertheless, Eq. (7) is the preferred
formulation for determining propagating waves, since it gives a stable numerical problem and
evaluates roughly 100 times quicker than the linearised polynomial eigenvalue formulation.

2.2. Wave solutions

This section describes the waves that propagate in the channel beam. The solutions derived
from approximate analytical beam theories are compared to the numerical solution provided by
the waveguide-FEM and the regions of validity for the different methods are discussed.

2.2.1. Euler beam

For an Euler beam, the wavenumbers of the propagating waves with transverse motion in the x
and y directions, longitudinal motion and rotational motion are given by

kbx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EIy

qr
; kby ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EIx

pq
;

kl ¼ o=
ffiffiffiffiffiffiffiffiffi
E=r

p
; kr ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rIr=GIt

p
; ð9Þ

where r is the density, E is Young’s modulus, A is the cross-sectional area, Ix and Iy are the area
moments about the x- and y-axis calculated for the section centre, Ir ¼ Ix þ Iy and GIt is the
Saint–Venant rotational rigidity [20, p. 45]. The waveguide-FE is based on thin shell theory and
hence for reason of comparison, the transverse and rotational wavenumbers in Eq. (9) are
evaluated with a Young’s modulus E0 ¼ E=ð1� n2Þ; where n is the Poisson ratio.
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Fig. 3. Wavenumbers. Dots, simple waveguide-FE model; solid line, Euler beam theory, Eq. (9). In the low-frequency

end, these are from top to bottom: kbx; kby; kr and kl :

S. Finnveden / Journal of Sound and Vibration 273 (2004) 51–7556



Fig. 3 compares the wavenumbers described by Eqs. (9) with those calculated by the simple
waveguide-FE model in Fig. 2a. At lower frequencies, the models agree except for a minor
difference in the rotational wave. However, already at 5 Hz the rotational wavenumbers differ
largely and in a cross-over region so the wavenumbers for transverse motion in the y direction.
Consequently, simple beam theory does not provide an accurate description of all the waves in the
beam, except for very low frequencies, and a more elaborate theory is required.

2.2.2. Vlasov beam
The Euler beam theory does not include the warping resistance, which for an open cross-section

significantly impedes the rotational motion [20]. Moreover, for structures having different shear
and mass centres, there are inertia couplings of the flexural waves and the rotational wave. The
Vlasov beam theory attributes these two effects, resulting in the following set of coupled
differential equations, which are taken here from Friberg [21] for the case of equal y co-ordinate
for the mass and shear centres

EIyu0000 þ ro2Iyu00 � rAo2u ¼ 0;

EIxv0000 þ ro2Ixv00 � rAo2ðv þ xGfÞ ¼ 0;

EIof
0000 þ ðrIoo2 � GItÞf

00 � ro2ðIr þ x2
GAÞf� rAo2xGv ¼ 0;

� EAw00 � rAo2w ¼ 0: ð10Þ

Above, u; v and w are the displacements at the shear centre in the x; y and z directions,
respectively, f denotes the rotation about the z-axis and prime denotes differentiation with respect
to the z variable. EIo is the warping rigidity and xG is the distance between the shear centre and
the mass centre [20, p. 202]. Shear deformation is not considered in the Vlasov theory (10). Friberg
followed Vlasov who included the rotary and warping inertia terms. Normally, these inertia
effects are small compared to the effects of shear deformation, but have been retained for
completeness.
Fig. 4 compares the wavenumbers derived from the set of equations (10) with those calculated

by the simple waveguide-FE model. As can be seen, the agreement is excellent up to the
frequencies where the shear waves propagate. The simple FE model predicts the cut-on
frequencies for these waves at 377 and 776 Hz; respectively.
Fig. 5 shows the wavenumbers calculated by the detailed FE model. It predicts cut-on

frequencies for the two shear waves at the slightly lower frequencies of 373 and 772 Hz: For
reference, Fig. 5 also shows the free flexural wavenumber for a plate with a wall-thickness t ¼
4:5 mm; which is given by [1]

kp ¼
ffiffiffiffi
o

p rt

Et3=12ð1� n2Þ

� �1=4
: ð11Þ

Fig. 6 shows, as an example, the waveform for the four waves that propagate at 20 Hz: Similarly,
Fig. 7 shows two complex waveforms at approximately 2 kHz:
The shear waves may have been predicted with Vlasov–Timoshenko beam theory. This theory,

however, is complicated and it is difficult to find the cross-sectional parameters for such a model,
especially so for more complex cross-sections. Indeed, the determination of these parameters is
still subject to research, e.g. [22]. In contrast to this, the waveguide-FE model requires only the
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nodal co-ordinates and, for each element, Young’s modulus, the Poisson ratio, the density and the
wall thickness. This technique should therefore be useful in engineering practice where it is
valuable to know the vibrational wavelengths and waveforms. Moreover, the number of
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Fig. 4. Wavenumbers. Solid line, Vlasov beam theory, Eq. (10); dots, simple waveguide-FE model.
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resonances and the speed by which the vibrational energy propagates in the structure can be
determined, as will be explained in the following.

2.3. Modal density and group velocity

In Section 2.1 it was shown that the matrices Kn and M are real-valued for structures without
damping and K is Hermitian whereas M is symmetric. Thus, if k ¼ kðoÞ is a real eigenvalue to
Eq. (3) and U is the corresponding eigenvector, then�k is also an eigenvalue with eigenvector U�:
One of the solutions to the equations of motion (1) is therefore given by

U ¼ aðUeikz þ U�e�ikzÞ ¼ bðReðUÞcosðkzÞ þ i ImðUÞsinðkzÞÞ; ð12Þ

where a and b are constants, possibly complex.
To satisfy general boundary conditions for a finite length waveguide, all solutions to Eq. (1) are

required, including all the evanescent near-field solutions. One particular boundary condition,
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however, is fulfilled for the propagating wave solutions, without any interaction between them.
For structures built-up by the element detailed in the Appendix, this is the ‘shear diaphragm’
condition, for which the motion in the x–y plane is blocked and the motion in the z direction is
free. It follows that the eigenmodes of a waveguide of length L; obeying this ‘convenient’
boundary condition, are of form (12), when k is given by

k ¼ pp=L; ð13Þ

where p is a positive integer. Hence, the eigenfrequencies, op:r are given by the standard eigenvalue
problem that follows from Eq. (3) where k takes the values given by Eq. (13). The eigenvectors
Up:r and the trigonometric functions in (12) specify the corresponding eigenmodes Wp:r:
For waveguides that are many wavelengths long, the modal density is asymptotically

independent of the boundary condition at the ends. Hence, it follows from the discussion
previous to Eq. (13) that the asymptotic modal density, for branch r of the dispersion relations, is
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given by

nrðoÞ ¼
@Nr

@o
E
@ðkrL=pÞ

@o
¼

L

p
@kr

@o
: ð14Þ

where NrðoÞ is the mode count for branch r; i.e., the number of resonances below frequency o: If
the wavenumbers kr ¼ krðoÞ have continuous derivatives, the modal density may alternatively be
given by

nrðoÞ ¼
L

pcg:r
; cg:r ¼

@o
@kr

; ð15Þ

where cg:r is the group velocity for the considered wave type, i.e., the speed by which wave energy
propagates along the waveguide.

2.3.1. Evaluation of the group velocity

The modal density nrðoÞ and the group velocity cg:rðoÞ may be calculated by numerical
differentiation based on the values of wavenumbers at two adjacent frequencies or from the
difference of frequencies at two adjacent wavenumbers. This requires that the solutions to the
dispersion relations be categorised, so that the different branches can be identified. In light of the
complexity of dispersion curves, such as Fig. 5, this is not straightforward when one branch
approaches another. Some linear algebra illustrates an immediate remedy. First, evaluate the
derivative of Eq. (3) with respect to wavenumber

@

@k
ð½KðikÞ � o2M�UÞ

¼
@KðikÞ
@k

� 2o
@o
@k

M

� �
U þ ½KðikÞ � o2M�

@U
@k

¼ 0: ð16Þ

Multiply this equation from the left by the left-eigenvector, UðLÞT ¼ UH: Then, by virtue of
Eq. (5), one has

UH @K

@k
� 2o

@o
@k

M

� �
U ¼ 0: ð17Þ

This is, since @o=@k is a scalar, equally written as

cg:r ¼
@o
@kr

¼
UHK0U

2oUHMU
; ð18Þ

where

K0 ¼
@KðikrÞ
@kr

¼
X4
n¼1

ninkn�1
r Kn: ð19Þ

Eq. (18) can be evaluated considering one solution of the dispersion relations only. It is on a
general form and may be applied to any structure built up by a combination of the waveguide-FEs
presented in Refs. [6–17]. It is considered to be the most important result of the present work.
Fig. 8 compares the group velocities calculated by Eq. (18) with those resulting from the simple

beam theory (9). The group velocities calculated for the non-dispersive longitudinal wave agree at
all frequencies. The velocities for the flexural wave with transverse motion in the x direction agree
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up until the cross-sectional shear becomes important at approximately 200 Hz: In the cross-over
regime, 2–20 Hz; the flexural wave with transverse motion in the y direction and the rotational
wave are strongly coupled and the Euler theory does not describe the wave motion. Above this
regime, the group velocities agree for the flexural wave up until 200 Hz: The group velocity for the
rotational wave, however, is not predicted by simple beam theory.
The group velocity is an important characteristic of a wave. It plays a critical role as input

datum for a wave intensity analysis (WIA) [23] and for wave approach calculation of coupling loss
factors in a SEA, e.g., [2,3,24]. It turns out that Eq. (18) is useful for such energy analyses.

2.3.2. Evaluation of the total modal density in frequency bands

In certain circumstances, a SEA will describe all the wave types in a substructure by one SEA
element, an example is given in Section 3. In such a situation, the modal density in a frequency
band between frequencies ol and ou is given by

n ¼
NtotðouÞ � NtotðolÞ

ou � ol

; ð20Þ

where from Eq. (13), the asymptotic mode count Ntot for a waveguide of length L is given by

NtotðoÞ ¼
X

r

krðoÞL=p: ð21Þ

kr is a real-valued eigenvalue to the algebraic eigenvalue problem (3) for a given frequency o:
Fig. 9 shows for the channel beam in Fig. 1, with length L ¼ 1 m; the total mode count and the

normalised modal density evaluated for narrow bands (2.8% bandwidth) and third-octave bands.
As expected the mode count increases considerably at the cut-on frequency for the first shear
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wave. Also at higher cut-on frequencies notches appear in the curve indicating a high modal
density.

2.3.3. Modal density for individual branches

Different wave types have different group velocities and often each wave transmits different
amounts of energy at junctions between structural elements. An SEA of, e.g., a beam or a plate
structure therefore models transverse and in-plane waves with separate SEA elements. Similarly,
an SEA of the channel beam may consider the different wave types as separate elements.
The modal density can be evaluated for discrete frequencies from Eqs. (15) and (18). It appears

that the modal density is infinite at the cut-on frequencies. However, within any frequency band,
which includes a singularity the modal density must be integrable since the number of resonances
in a frequency band is finite for a finite length structure.
For lower frequencies, it is possible to identify the branches of the dispersion curve in Fig. 5.

The modal density for branch r is then given by

nr ¼
L

p
krðouÞ � krðolÞ

ou � ol

: ð22Þ

At higher frequencies, the identification of branches is intricate and an automatic procedure is
needed. Bocquillet et al. [25] suggested one such procedure which is applied here in a slightly
modified form.
The eigenvectors xðkÞ resulting from Eq. (7) are orthonormal:

xTp �xr ¼ dpr; ð23Þ

where dpr the Kronecker delta. Now, if the wavenumber is slightly increased to kþ Dk; it is
expected that all the eigenvectors xðkþ DkÞ are almost orthogonal to xrðkÞ; except for the one that
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belongs to branch r: Thus, it is possible to categorise the eigenvectors and, consequently, to define
the individual dispersion curves of the form o ¼ OrðkÞ: Linear interpolation then determines the
wavenumbers krðouÞ and krðolÞ; upon which expression (22) for the modal density can be
evaluated.
This procedure breaks down whenever two branches cross; e.g., in Fig. 5, the dispersion curve

for the longitudinal wave crosses the one for the first shear wave at approximately 380 Hz: At this
frequency, the two eigenvectors will be nearly orthogonal, yet arbitrary linear combinations of the
waveforms for the longitudinal wave and the shear wave. To handle this, the solution to the
dispersion relations at several wavenumbers needs to be considered when sorting the branches.
This, however, is beyond the scope of the present article.
To conclude this section, the procedures for devising wave equations for a channel beam using

FE procedures have been recapitulated. Upon this basis, a technique for post processing the
solutions to the wave equations producing the modal density and group velocity was
demonstrated. The most important result being Eq. (18). In the following section, the technique
will be applied to a real-life structure: a wind tunnel.

3. Structure-borne sound transmission in a wind tunnel

The Marcus Wallenberg Laboratory houses a high-speed, low-noise acoustic flow duct that
allows for flow velocities up to 130 m=s and has a background noise level less than 25 dBðAÞ: It
has been extensively used for studies of acoustic transmission in ventilation and exhaust systems
and for investigations of turbulent boundary layer (TBL) excitation of vibrations in shell
structures [26].
For the TBL investigations, an aperture was made in the wind tunnel wall where a thin-walled

aluminium plate was mounted. Its TBL-induced vibrations and the radiated sound power was
measured. A sketch of the tunnel cross-section where the plate is mounted is shown in Fig. 10. The
length of the test plate was 768 mm:
The TBL wall pressure, of course, induces vibrations in both the aluminium plate and the

tunnel. A critical question then is, whether the measured plate vibrations are predominantly
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directly induced by the TBL or if a substantial contribution is indirectly given by the structure-
borne sound transmission of vibrations from the tunnel. To aid the assessment of this, a simple
SEA model was made. The critical input datum to the SEA model is the tunnel’s modal density,
which is calculated with the procedures developed in the previous section. This investigation is
explained in the following.

3.1. Sea model

At higher frequencies, SEA should provide, at least, the correct order of magnitude of vibration
energies and coupling powers. A simple SEA model considers the flexural vibrations of the test
plate as one SEA element and the tunnel as another. The vibration energies are given by [2]

M1 þ C �C

�C M2 þ C

" #
Em:1

Em:2

" #
¼

Pin:1

Pin:2

" #
; ð24Þ

where subscript 1 refers to the test plate and subscript 2 to the tunnel. Pin:i is the injected power
into subsystem i; Mi is the modal overlap, C is the conductivity and Em:i the modal energy
(vibration energy per mode times analysis bandwidth). The conductivity is defined through the
ansatz (24), whereas one has

Em:i ¼ Ei=ni; Mi ¼ Zioni; ð25Þ

where Zi is the loss factor of element i; ni is the modal density and Ei is the time-averaged
vibration energy in the considered frequency band.
The conductivity and the modal overlap factors are positive and thus the SEA equation is a

potential flow model where energy flows from high temperature (modal energy) to low
temperature. Consequently, if power is injected into the tunnel only, Eq. (24) indicates that the
test plate vibration is restricted by

Em:1pEm:2: ð26Þ

For reverberant vibrations, the kinetic and strain energies are on average equal and it follows that

r1Tp:1

n1=A1
/v21Sp

r2ð2h þ 2bÞTp:2

n2=L2
/v22S; ð27Þ

where h; b and L2 are the tunnel height, width and length, Tp:i is the wall thickness, ri is the
density, A1 is the plate area and /v2i S is the mean square spatial averaged vibration velocity.
The aperture alters the tunnel’s wave pattern considerably and the calculation of the

conductivity would not be straightforward. Also, the modal overlap factors need be determined
before the application of Eq. (24). The application of Eq. (27) is much simpler, only the total mass
and modal density are required and for the large tunnel structure, these are not much affected by
the aperture.

3.1.1. Test plate modal density
The test plate is a thin-walled aluminium plate having its first resonance at approximately

90 Hz: Below this frequency the SEA model (24) is useless. At somewhat higher frequencies, the
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plate’s modal density is estimated by the asymptotic expression [1]

n ¼
A

3:6cLTp

; cL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð1� n2Þ

r

s
: ð28Þ

3.1.2. Tunnel modal density
The tunnel is a steel structure that supports many different wave types. At lower frequencies it

acts like a beam and at higher frequencies it could be likened to a plate assembly. In the high-
frequency region, the tunnel modal density, neglecting the in-plane waves, can thus be estimated
from Eq. (28). It follows from Eq. (27) that the velocity level difference between the plate and the
tunnel is restricted by

DLv ¼ 10 log10
/v21S
/v22S

� �
p10 log10

r2cL2T
2
p:2

r1cL1T
2
p:1

 !
E22 dB: ð29Þ

Thus, in the high-frequency region, the frequency and space-averaged plate vibration level will,
regardless of coupling strength and levels of damping, not exceed that for the tunnel by more than
22 dB when the tunnel only is excited.
Now, to find the limits for the ‘low’ and ‘high’ frequency regions and to study the intermediate

region, a waveguide-FE model of the wind tunnel was made, based on the FE mesh in Fig. 11. The
calculated wavenumbers are shown in Fig. 12 as are the flexural wavenumbers for a 12 mm steel
plate and the wavenumbers calculated for a Timoshenko beam, supporting two transverse, one
axial and one torsional waves plus, at higher frequencies, two shear waves. The Timoshenko
theory predicts the wavenumbers accurately up to approximately 100 Hz; except for a minor
deviation for the rotational wave, possibly caused by the use of Saint–Venant’s torsion theory,
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neglecting the warping restraint [20]. Fig. 13 shows the waveforms for the first two higher order
cross-sectional waves having cut-off frequencies around 300 Hz:
The results in Fig. 12 are the basis for the evaluation of the tunnel’s modal density as described

in Section 2. Eq. (27) then gives an upper limit for the transmission of vibration from the tunnel to
the plate. Fig. 14 shows this conservative SEA estimate of the plate vibration, normalised with the
tunnel vibration, for three different values of the tunnel’s modal density based on: Timoshenko
beam theory, plate theory and the waveguide-FE model. As can be seen, the value based on the
waveguide-FE model agrees with the beam theory below 125 Hz and, to a somewhat lesser degree,
with the plate theory above 300 Hz; thus defining the low- and high-frequency regions discussed
above.
Fig. 14 also shows the velocity level difference measured when a shaker excited the tunnel. This

measurement is not fully representative for the case when there is flow within the wind tunnel,
since the TBL excites the tunnel differently. Moreover, with flow there is a large static pressure on
the structure, which significantly changes the frequencies and mode shapes of both the tunnel and
the plate. Nevertheless, the measurement provides one estimate of the structure-borne sound
contribution to the plate vibrations and it confirms that the alternative SEA estimate (27), which
applies equally for shaker excitation and TBL excitation, is indeed conservative.
In conclusion, the Waveguide-FE-based SEA estimate in Fig. 14 gives a conservative estimate

of the maximum contribution to the test plate vibration caused by the tunnel vibration. Thus, if
under operation the measured ratio of test plate vibrations to the tunnel vibrations is much larger
than the ratio displayed in Fig. 14, one can safely conclude that the test plate vibrations are
induced by the TBL only.
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3.2. Wind tunnel assessment

Fig. 15 shows the measured tunnel and plate acceleration for a flow speed of 120 m=s: The plate
vibration has a maximum around the aerodynamic coincidence, predicted at 560 Hz [26]. The
tunnel has a visible maximum at 300 Hz and at higher frequencies its vibrations approach the
plate vibrations. Analysis shows that the difference in acceleration level between plate and tunnel
is too low, compared to the requirements defined by the values in Fig. 14.
To reduce the tunnel vibrations and hence the vibration transmission to the plate, most of the

tunnel was covered with a constrained layer damping treatment. This improved the velocity level
difference at higher frequencies but not so much around 300 Hz:
The waveguide-FE calculation shows that there are two additional waves cut-on around

300 Hz; which increase the tunnel’s modal density and, hence, its mobility. This may explain
the increase in the tunnel vibrations above 300 Hz: Fig. 13 indicates that these waves have a

ARTICLE IN PRESS

 -0.2

- 0.1

0

0.1

0.2

 -0.05

0

0.05

 -0.15

 -0.1

 -0.05

0

0.05

0.1

0.15

X

Z

Y

 -0.2

 -0.1

0

0.1

0.2

 -0.05

0

0.05

 -0.15

 -0.1

 -0.05

0

0.05

0.1

0.15

X
Z

Y

(a)

(b)

Fig. 13. (a) Waveform for first higher order wave at f ¼ 290 Hz and k ¼ 0:2 m�1: (b) Waveform for second higher

order wave at f ¼ 320 Hz and k ¼ 0:2 m�1:

S. Finnveden / Journal of Sound and Vibration 273 (2004) 51–7568



plate-character, involving flexural motion of the tunnel wall. Based on this evidence, two steel bars
with a cross-section of 40	 40 mm2 were fitted on the tunnel’s top face just in front and after the
test plate. These bars have a considerable bending stiffness compared to that of the tunnel wall
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and were designed to block the flexural vibration transmission. The effectiveness of these
treatments is appreciated in Fig. 16, showing that the test plate vibrations above 100 Hz are
induced by the turbulent flow and not by the tunnel vibrations.

4. Conclusions

The waveguide finite element method formulates a system of wave equations for complicated
structures. From the wave equations follow dispersion relations, relating wavenumbers with
frequency for propagating waves. These relations can be transformed into a linear eigenvalue
problem and solved by efficient standard routines. The proven versatility of the FEM and the
examples in the Refs. [6–17] suggest that the method may apply for any conceivable structure with
cross-sectional properties that are uniform along one direction.
A critical input datum to a statistical energy analysis is the modal density. The calculation of

SEA coupling loss factors using wave approach methodology, see, e.g., [2,3,24], requires the group
velocity for the studied waves. The present work demonstrates, for the first time, the evaluation of
these quantities based on the waveguide-FEM. The presentation is made via two examples.
The first example considers a channel beam with dimensions such that beam theories apply only

in a lower-frequency regime. For this beam, the dispersion relations are solved and the results are
compared with those from the Euler and Vlasov beam theories, showing that the Vlasov theory
describes the wave motion at frequencies below 200 Hz; whereas the Euler beam theory cannot.
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To the best of the author’s knowledge, commercial SEA packages consider Euler and Timoshenko
beam theories only. Therefore, these packages cannot be used for an SEA of the channel beam,
except for higher frequencies for which the beam is likened to a plate assembly.
Higher order beam theory is complicated and requires cross-sectional data, which for complex

sections may be difficult, if not impossible, to find in the literature. In contrast to this, the only
data required for the waveguide-FEA are the geometry and the material data. Thus, even when
beam theory applies, the waveguide-FEM seems advantageous, especially so, as calculations are
readily made.
The second example considers a wind tunnel having an aluminium plate mounted into an

aperture in its wall. A high-speed internal flow generates a turbulent fluctuating wall pressure,
which excites vibrations in both the tunnel and the test plate. For studies of the test plate
vibration, it is critical that the vibration transmission from the tunnel to the plate is small.
To estimate the vibration transmission from the tunnel to the plate, an SEA model is made and

for this the modal densities of the tunnel and the plate are required. The plate’s modal density is
estimated by the expression for a thin-walled plate, taken from the literature. The tunnel is a more
complicated structure, which behaves as a beam at low frequencies and as a plate assembly at
high frequencies. To find the limits for these frequency regions and to study the intermediate
frequency region, a waveguide-FE model of the tunnel was made. This model determines the
characteristics of the vibrational waves in the tunnel and it facilitates the calculation of the modal
density.
From the SEA it follows that the energy per mode in the plate cannot, on average, be higher

than that of the tunnel, when the tunnel only is excited. Thus, if under operation the plate’s modal
energy is much higher than the tunnel’s modal energy, it follows that the vibration transmission
from tunnel to plate is insignificant compared to the direct TBL excitation. This gives a
conservative estimate of the tunnel vibration’s contribution to the test plate vibration by which
the performance of the experimental setup can be assessed.
The presented calculation shows SEA at its best. For the considered range of frequencies, it

would be hard, indeed, to calculate the response to turbulent excitation of the wind tunnel using
standard methods. SEA, on the other hand, immediately provides a conservative estimate of
the vibration transmission from the tunnel to the plate. The success of this simple SEA calcu-
lation is based on the presented procedure for the evaluation of the wind tunnel’s modal
density. Moreover, the extra information gained from the waveguide-FE analysis
helped in devising measures to stop the vibration transmission from the wind tunnel to the test
plate.
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Appendix A. Waveguide FE formulation

A.1. Strain energy for plate strip

Consider one of the strip elements that describe the channel beam in Fig. 1 or the wind tunnel in
Fig. 10. The plate strip is in a local x–z plane with the local y-axis normal to the strip. The local z-
axis coincides with the global z-axis and is in the direction of wave propagation.
For harmonic time dependence the strain energy for an orthotropic plate strip of thickness Tp;

width 2l and in-definite length is given by

Ep ¼
Z

dz

Z l

�l

ðeip þ ebpÞ dx ¼
Z

dz

Z l

�l

½e��TD½e� þ
T2

p

12
½v��TD½v� dx; ðA:1Þ

where upper index � denotes complex conjugate, eip is the in-plane strain energy density, ebp is the
flexural strain energy density and

½e� ¼
@u

@x

@w

@z

@u

@z
þ
@w

@x

� �T
; ½v� ¼

@2v

@x2

@2v

@z2
2@2v

@x @z

� �T
ðA:2Þ

D ¼

Bx Bxz 0

Bxz Bz 0

0 0 G

2
64

3
75: ðA:3Þ

u; v and w are the displacements, as functions of frequency, in the local x; y and z direction,
respectively. For an isotropic plate,

Bx ¼ Bz ¼
TpE

ð1� n2Þ
; Bxz ¼ nBx; G ¼

TpE

2ð1þ nÞ
; ðA:4Þ

where E is Young’s modulus and n is the Poisson ratio.
The expressions for the strain energy densities are expanded, resulting in

eip ¼Bx

@u�

@x

@u

@x
þ Bxz

@u�

@x

@w

@z
þ Bxz

@w�

@z

@u

@x
þ Bz

@w�

@z

@w

@z

þ G
@u�

@z

@u

@z
þ

@u�

@z

@w

@x
þ

@w�

@x

@u

@z
þ

@w�

@x

@w

@x

� �
; ðA:5Þ

ebp ¼
T2

p

12
Bx

@2v�

@x2

@2v

@x2
þ Bxz

@2v�

@x2

@2v

@z2
þ Bxz

@2v�

@z2
@2v

@x2

�

þ Bz
@2v�

@z2
@2v

@z2
þ 4G

@2v�

@x @z

@2v

@x @z

�
: ðA:6Þ

A.2. Shape functions

Polynomial shape functions that describe the motion’s x-dependence are assumed in the form of

uðx; zÞ ¼ fðxÞ�Bu�VðzÞ; vðx; zÞ ¼ gðxÞ�Bv�VðzÞ; wðx; zÞ ¼ fðxÞ�Bw�VðzÞ; ðA:7Þ
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where the entries of the vector V are the three displacement components and the rotation about
the z-axis along the lines x ¼ 7l , plus any additional internal degrees of freedom and

fðxÞ ¼ ½1 x y xn�; gðxÞ ¼ ½1 x y xm�; x ¼ x=l: ðA:8Þ

Implemented in the routine used in the calculations is that the in-plane vibrations u and w are
described by linear FE shapefunctions whereas the out of plane vibrations are described by cubic
polynomials. Thus, in Eq. (A.8) n ¼ 1 and m ¼ 3: The eight variational parameters in V are then
the three displacement components plus the rotation about the z-axis at the two nodes. This
choice of parameters and the definitions of f and g determine the matrices Bu;Bv and Bw:

A.3. Evaluation of the stiffness matrix

The shape functions defined by Eq. (A.7) are inserted into the expression for strain energy (A.1)
and the integrals and derivatives with respect to x are evaluated, resulting inZ

eip dx ¼ ½V��TA00V

þ
@Va

@z

� �T
A10V þ ½V��TA01

@V

@z

� �
þ

@V�

@z

� �T
½A11�

@V

@z

� �
; ðA:9Þ

Z
ebp dx ¼ ½V��TB00V þ

@V�

@z

� �T
½B11�

@V

@z

� �

þ
@2V�

@z2

� �T
B20V þ ½V��TB02

@2V

@z2

� �
þ

@2V�

@z2

� �T
½B22�

@2V

@z2

� �
; ðA:10Þ

where

Anm ¼ AT
mn; Bnm ¼ BT

mn: ðA:11Þ

A00 ¼ BxB
T
u I1:1Bu þ GBT

wI1:1Bw;

A10 ¼ BxzB
T
wI0:1Bu þ GBT

u I0:1Bw;

A11 ¼ BzB
T
wI0:0Bw þ GBT

u I0:0Bu; ðA:12Þ

B00 ¼
BxT2

p

12
½Bv�TJ2:2Bv; B11 ¼

GT2
p

12
½Bv�TJ1:1Bv;

B02 ¼
BxzT

2
p

12
½Bv�TJ0:2Bv; B22 ¼

BzT
2
p

12
½Bv�TJ0:0Bv; ðA:13Þ

In:m ¼
Z l

�l

@nf

@xn

� �T
�

@mf

@xm

� �
dx; Jn:m ¼

Z l

�l

@ng

@xn

� �T
�

@mg

@xm

� �
dx: ðA:14Þ

The integrals and derivatives in Eq. (A.14) are conveniently, and exactly, evaluated with the
routines ‘‘Dif’’ and ‘‘Int’’ in Ref. [15, Section 3.1] or by explicit derivation and Gaussian
integration, e.g. Ref. [27].
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A.4. Equations of motion

The ‘Lagrangian’ describing free motion of the plate is given by

Lp ¼ Ep � Ek; ðA:15Þ

where Ep is the strain energy, given by Eqs. (A.1), (A.9) and (A.10) while Ek is the kinetic energy,
which is given by

Ek ¼
Z

dz

Z l

�l

o2rTpðu�u þ v�v þ w�wÞ dx ¼ o2

Z
½V��TM½V� dz; ðA:16Þ

M ¼ rTpðBT
u I0:0Bu þ BT

v J0:0Bv þ BT
wI0:0BwÞ: ðA:17Þ

The corresponding set of Euler–Lagrange equations is [28, Chapter 3]

K4

@4V

@z4
þ K3

@3V

@z3
þ K2

@2V

@z2
þ K1

@V

@z
þ K0V � o2MV ¼ 0; ðA:18Þ

where

K4 ¼ B22; K3 ¼ 0; K2 ¼ B20 þ B02 � B11 � A11;

K1 ¼ A01 � A10; K0 ¼ B00 þ A00: ðA:19Þ

The matrices Kn and M are calculated for each element and the matrices are assembled using
standard FE procedures [27], thus producing Eq. (1).
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